Your Guide to Software Selection

5 Strategies For Increasing BI Adoption

There’s a paradox in Business Intelligence (BI) software today. The market is projected to grow at a rapid pace for the next four years, yet adoption is lingering at 30% in the majority of enterprises, according to Gartner. Traditional factors that often lead to software adoption success are starting to lose influence.

Get our BI Software Comparison Matrix.

Today, relying on a VP or C-level executive to champion a BI initiative to success isn’t enough. What’s needed is a more coordinated approach across organizational, process and technological areas of a company’s BI effort to get the greatest value possible. To increase the probability of success for BI adoption in an organization, it’s important to take into account a series of factors found from an organizational, process and technological perspective.

Quick Facts

The lack of BI adoption is slowing down organizations of all sizes from being able to make the most of the massive amount of data they’re producing daily.  BI applications and tools enable greater insight and intelligence into areas of business models never before analyzed or understood. Of the many areas BI is contributing to today, one of the most valuable is gaining greater insights into customer behavior by predicting buying outcomes. By knowing more about their customers, businesses can streamline their business processes and make them more efficient. When this occurs, they excel when it comes to improving product quality and customer service.

Data is proliferating in each of the six areas shown in the graphic below. Data scientists, cloud-based applications and the Internet of Things (IoT) are among the most prolific sources of data today. The combination of all of these factors is driving a data onslaught in every organization. BI applications and tools need to gain greater adoption for companies to make the most of the valuable data being generated from each of these sources.

Figure 1 BI AdoptionFacing The Challenges Of BI Adoption

The problem of increasing BI adoption is a multidimensional one with no quick fix available. Instead, there needs to be a balance of the organizational, process and technological factors in order for BI adoption to succeed. Galvanizing all three of these core areas needs to be a central business focus that everyone can identify with, and take an active part in accomplishing. This is where the majority of BI adoption strategies fail.

There’s often no unifying business purpose that benefits everyone, whether it’s gaining valuable new knowledge to do their jobs, or better understanding how to serve their customers. When every employee using the system has a strong sense of ownership and purpose, all three strategic areas needed for the improvement of BI adoption fit into place, increasing adoption rates. A senior management champion alone can’t galvanize the purpose of a BI system together as powerfully as a shared goal and a desire on the part of employees to excel with the new BI system.

Overcoming Technology-Related Challenges To BI Adoption

The leading technological factor that’s slowing down BI adoption is the lack of integration with legacy and 3rd-party databases, as well as the many enterprise systems that provide greater contextual data. BI applications running on a single database have limited potential to deliver contributions to organizations. The greatest technological inhibitor to BI adoption is non-integrated BI and analytics tools in which users are manually importing data in an attempt to get greater insights.

Many organizations begin their BI integration strategy by concentrating on legacy and 3rd-party databases first, before moving on to larger, more complex integrations involving enterprise applications like Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP). Integrating with legacy and 3rd-party databases often require customizing a connector or adapter, which could translate into professional services fees and other additional costs.

For organizations with in-house IT teams, this is a relatively straightforward process. It costs time, but time is often what many IT teams are very short of as they try to support the groups of users across a larger organization. Fortunately, many analytics and BI applications provide advanced adapters for integrating with CRM, ERP and other enterprise apps. It’s less expensive to purchase an adapter or connector created by the BI provider than it is to pay a system integrator to complete a custom integration from a BI app to an enterprise system that’s already implemented and running.

Balancing the costs of integration versus the goal of providing real-time analytics and BI access company-wide is what every leadership team grapples with. The following graphic provides an overview of the stages that organizations go through as they integrate BI applications into their IT systems and workflows. Starting with legacy and 3rd-party databases before progressing to CRM, ERP and other enterprise-wide systems, the majority of organizations often rely on 3rd-party connectors and adapters to complete this work. Integrating with enterprise-wide systems including CRM and ERP is where the value of BI increases exponentially.

This is a critical phase of integration, as it provides customer-driven data from the CRM system, along with a wealth of transactional data from the ERP system and its supporting apps. Organizations reaching the highest levels of BI adoption can integrate all of these systems together, attaining real-time analytics and reporting enterprise-wide.

Figure 2 BI AdoptionThe ascension of BI adoption from only integrating with legacy and 3rd-party applications to integrating with enterprise apps is critically important for the acceleration of BI adoption. Without the added data from enterprise applications, BI adoption tends to stall, stop and, eventually, decline. From this standpoint, it’s a fair assumption to say that if any company wants to gain high BI adoption levels, they’ll need to integrate with CRM, ERP and other enterprise systems that are core to their daily functions as a business.

The following are the most important technology-based success factors that drive greater BI adoption:

  • Real-time Integration between BI systems and legacy/3rd-party databases, CRM and ERP systems – BI projects that attain the highest levels of adoption focus on these areas first, and start building out a roadmap of integration points to guide development. It’s critical for timeframes to be communicated company-wide regarding integration to databases and apps, as that provides other departments visibility into when they need to begin their part of the BI implementation project. In larger organizations, the Project Management Office (PMO) manages the roadmap, and a senior executive takes ownership of the responsibility. If an organization doesn’t have a PMO, the best approach is to define a project leader in its headquarters who can manage the roadmap to completion on a daily basis.
  • Defining and acting on data quality standards early and often during the BI implementation phase – Data quality can make or break any BI implementation, as users will immediately judge the value of any BI system by the results it generates when they first use it. Making data quality a priority pays, and it helps accelerate BI adoption when users see accurate reporting and analysis that reflects the actual conditions of the company.
  • Selecting a flexible, modular system that can scale with your user’s needs is a must-have to drive BI adoption – BI adoption increases when a system can flex and respond to the needs of a broad base of users, without forcing them to change how they work. The more modular and agile a BI system is, including the flexibility for defining custom workflows by business analysts, the greater the level of adoption will be.
  • The ability to customize dashboards and reports; generate advanced data visualizations; and enable more responsive self-service are critical success factors for driving BI adoption – These are must-have features in any BI application in order to drive greater adoption. Across the spectrum of small and medium businesses (SMBs) to enterprises, these four areas are the foundational features of applications that drive adoption. Companies that excel in these dimensions of BI include Microsoft, MicroStrategy, Tableau and Yellowfin. The following graphic provides an overview of technology priorities by organization size. It’s a part of a broader study by Dresner Advisory Services summarized in the Forbes post, Small Businesses Are The Real MVPs Of Analytics And BI Growth.
  • Figure 3 Tech Adoption CircleSelecting a BI application that delivers excellent customer experience and intuitive, easy-to-use, streamlined workflows are essential – BI applications continue to improve in this area of product design. Today’s leaders include Birst, ClearStory Data, MicroStrategy, Microsoft, Oracle, Qlik, Salesforce, TIBCO and ZoomData. Based on the research by Dresner Advisory Services, Gartner and others, it’s clear that this is a future product direction of all BI vendors in the market today. Selecting a vendor that excels in this dimension will drive greater BI adoption when the implementation takes into account the other factors mentioned.

BI Integration Roadmaps Bring Technology Key Success Factors Together

Bringing the five technology success factors together into a unified roadmap helps everyone in an organization visualize what success looks like, and helps it move faster towards that success. Every BI vendor has a product roadmap available for each product line, and several have roadmaps defining their product direction by vertical market. Making sense of all the vendor roadmaps requires organizations aiming for high BI adoption to create their own.

Defining a BI Implementation roadmap defines which legacy, 3rd-party databases and enterprise systems will be integrated, and provides an assessment of how BI will be used. BI implementation efforts are often first focused on customer-driven advanced analytics, and the creation of role-based dashboards. As BI adoption grows over time, greater insights are gained from manufacturing, logistics and supply chain systems leading to a new base of knowledge in the company and manufacturing intelligence. Predictive analytics-based efforts shown on the right side of the following figure are often the catalyst that leads to greater operational and manufacturing performance.

Figure 3 BI Adoption by appFive Strategies For Increasing BI Adoption

Concentrating on the technology-related success factors sets the foundation for enabling greater process and organizational change. Key success factors, from a process standpoint, include clearly defining the business problem/processes and gaining consensus on what problems the BI system needs to solve. Second, processes need to be defined by user expectations, using an audit of their needs. Third, there needs to be process workflows that allow for the BI application and components to align with your user’s specific needs.

Change management plans and frameworks often take these process-based key success factors into account when defining an overall strategy for implementation. Organizational success factors include having an adequate budget defined before the project begins, support from senior management, having a dedicated BI project manager in place, a scalable team supporting that manager, a clear plan and a dedicated implementation specialist from the provider of the BI application.

Taking the technology, process and organizational success factors into account, here are the top five strategies for increasing BI adoption:

  1. A clear, well-defined business case that gives every participating employee a chance to see how their contribution drives BI success – Providing the opportunity for greater autonomy, mastery and purpose for every employee is the cornerstone to making BI adoption rates improve. The greatest BI implementations aren’t pushed to high adoption levels; employees drive them there.
  2. Selecting a BI application with a flexible, agile architecture that can flex to changing requirements and need, including supporting embedded analytics – The five technology success factors address the issue of having an agile, flexible BI application that can scale. Flexing across analysis and content creation, data management, infrastructure and embedding analytics are all essential to set the foundation for BI adoption and growth.
  3. An experienced management team that includes directors, vice presidents and C-level executives who can cut through the cross-functional confusion and get things done – Contrary to the popular belief that it only takes a senior level management champion, experience has shown that cross-functional teams will often resist change. It often takes a unified effort on the part of senior management to get BI implementations done; all must be in favor and actively support the effort to break down barriers.
  4. Ensuring data quality from the very beginning of the project is a must-have – Oftentimes, data quality is relegated to the last of a series of factors that companies look at when planning and developing their BI implementation. Data quality needs to be designed in from the very beginning in order to get the maximum results possible, while ensuring that the BI applications being launched deliver data that users can take action on.
  5. A business results-driven development approach needs to underscore all efforts – Always tying back to business factors and the urgency to gain greater insights that can be turned into revenue, emphasizing business results can keep the intensity and focus at a high level until a BI project is completed. Keeping the intensity level up and focused on how BI adoption can drive revenue helps to maintain it as a priority until it’s complete.

Conclusion

Today, organizations are facing the many challenges of improving BI adoption, and oftentimes they only get a fraction of the data they could from their systems. Taking the five strategies for increasing BI adoption and creating a unified, cohesive strategy that reflects the urgency of gaining greater revenue based on sights helps fuel greater adoption. Providing users with greater autonomy, mastery and purpose, as well as seeing how their contributions matter, also helps. The bottom line is that BI systems are designed to flex to evolving requirements more than ever before, so taking a customer- and revenue-driven approach to defining its role improves adoption rate growth.

Get our BI Software Comparison Matrix.

Louis Columbus5 Strategies For Increasing BI Adoption

Leave a Reply

Your email address will not be published. Required fields are marked *